
    

 
 

DCP Data Service (DDS) 
Protocol Specification 

 

Revision 2.2 

6/23/2003 

 

 

Prepared For 

 
 

 

 

 

Prepared by 

Ilex Engineering, Inc. 
Web: www.ilexeng.com 
Email: info@ilexeng.com 

 

U.S. Geological Survey,  
Water Resources Division 

 
U.S. Army Corps of Engineers 
 

National Oceanic and 
Atmospheric Administration 

 



    

Table of Contents 
 
1 INTRODUCTION............................................................................................................................... 1 

1.1 HISTORY OF DDS......................................................................................................................... 2 
1.2 RFC 2119 CONFORMANCE........................................................................................................... 3 
1.3 BNF NOTATION ........................................................................................................................... 3 

2 DDS PROTOCOL MESSAGES ........................................................................................................ 5 
2.1 DDS REQUEST/RESPONSE HEADERS............................................................................................ 5 
2.2 NORMAL AND ERROR RESPONSES ................................................................................................ 5 

3 CONNECTING AND DISCONNECTING ...................................................................................... 8 
3.1 TCP SOCKETS .............................................................................................................................. 8 
3.2 AUTHENTICATION BY ASSERTION ................................................................................................ 9 
3.3 AUTHENTICATED CONNECTION.................................................................................................. 10 
3.4 DISCONNECTING ........................................................................................................................ 11 

4 TRANSFERRING SEARCH CRITERIA TO/FROM THE SERVER........................................ 12 
4.1 SEARCH CRITERIA FILE FORMAT ............................................................................................... 13 

4.1.1 Allowable Time Formats for a Search Criteria File............................................................. 14 
5 TRANSFERRING NETWORK LISTS TO/FROM THE SERVER............................................ 15 

5.1 SENDING A TRANSIENT NETWORK LIST TO THE SERVER............................................................ 15 
5.2 RETRIEVING NETWORK LISTS FROM THE SERVER...................................................................... 16 
5.3 NETWORK LIST FILE FORMAT .................................................................................................... 16 

6 RETRIEVING DATA ...................................................................................................................... 17 
6.1 RETRIEVING A SINGLE MESSAGE PER REQUEST ......................................................................... 18 

6.1.1 Semantics for Until Time and Real-Time Retrieval .............................................................. 18 
6.2 RETRIEVING MULTIPLE MESSAGES PER REQUEST...................................................................... 19 

7 REFERENCE IMPLEMENTATION............................................................................................. 20 
 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 1  

1 Introduction 
DDS stands for “DCP Data Service”. It is a client/server protocol for efficiently 
transferring DCP data over a network. DDS is in wide use among agencies that use the 
GOES (Geosynchronous Operational Environmental Satellite) DCS (Data Collection 
System). 

This document provides a description of DDS and its history. It also defines the client 
server protocol in detail. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 2  

1.1 History of DDS 

There are four versions of DDS defined. 

DDS Protocol Version 1: 
DDS was originally developed by Integral Systems, Inc., as part of the DOMSAT 
Receive Station product. The DOMSAT Receive Station collected satellite data and 
stored it in a circular file on the hard disk. Clients could connect using DDS and retrieve 
any subset of data, either historical or in real-time. 

Ilex Engineering, Inc. (henceforth “Ilex”) purchased the DOMSAT Receive Station 
copyrights in September of 2000. Ilex currently maintains the DDS implementation in 
DOMSAT Receive Stations. 

USGS, BLM, and other organizations coded their applications to act as DDS clients, 
pulling data from a DOMSAT system in real-time. 

DDS Protocol Version 2: 
In 2000, Ilex produced a Java implementation of DDS for use in the open source LRGS 
(Local Readout Ground Station) DOMSAT receiver. This implementation enhances the 
original by allowing for the transfer of network list files. This is an important capability 
because it makes a client more independent from the server. The client can start a session 
by downloading all needed network lists. Before, the client would have to rely on 
persistent lists that were pre-loaded on the server. 

DDS Protocol Version 3: 
For LRGS Release 3.3, Ilex added a password-protection mechanism to DDS. This work 
was done under contract to the USGS. The mechanism uses a non-reversible hash of the 
passwords to prevent detection of passwords by monitoring network traffic. This 
document provides the details on the password exchange when a client establishes a 
connection. 

DDS Protocol Version 4 and 5: 
Ilex participated in an effort to build a replacement for the central DCP message 
processing system in Wallops, VA. This work was done for NOAA/NESDIS (National 
Oceanic and Atmospheric Administration, National Environmental Satellite Data 
Information Service). The new system, called “DAPS-II” will incorporate DDS as a 
primary mechanism for distributing DCP data to the user community. For DAPS-II, an 
enhancement has been added to DDS to improve performance, especially when used over 
a wide area network. 

Protocol Version 5 is identical to 4. The additional version is added because initial server 
implementations of the ‘message-block’ feature were not reliable on some OS platforms. 
This feature was subsequently tuned and tested on a variety of platforms. Current clients 
are recommended to not use the message-block feature unless the server supports 
protocol version 5 or higher. 

Successive versions are additive. None of the original features have been deprecated. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 3  

1.2 RFC 2119 Conformance 

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in 
this document are to be interpreted as described in IETF RFC 2119, which can be found 
at: 

http://www.ietf.org/rfc/rfc2119.txt?number=2119 

1.3 BNF Notation 

This document uses BNF (Backus Naur Form) to define the syntax of messages sent 
between client and server. The following conventions are used: 

Notation Meaning 
::= Is defined as 
'literal' A literal string is enclosed in single quotation marks 
nonterminal Non-terminal symbols are not enclosed in quotation 

marks. It must be recursively defined elsewhere. 
one | two Pipe symbol means ‘or’. This rule means “one or two”. 
{ rule } Curly brackets mean zero or more repetitions of rule. 
[ optional ] Rules in square brackets are optional. 
DIGIT Any ASCII digit 0 through 9 
CRLF ASCII Carriage Return followed by Line Feed 
SP ASCII Space Character 
STRING Any sequence of printable ASCII characters except 

CRLF. May contain space or tab characters. 
OCTET_STRING Any sequence of 8-bit binary octet values. This is only 

used for transferring DCP message data. 
( group of symbols ) Parentheses used for grouping within rules. 
# comment Characters after an un-quoted pound sign are comments. 

Table 1-1: BNF Conventions Used in this Document. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 4  

Some requests and responses contain a time stamp. All time stamps MUST be in UTC 
and SHALL be formatted as follows: 

time ::= YYDDDHHMMSS 
 

‘YY’ is the last two digits of the year. 
‘DDD’ is the Julian day of the year (January 1 == day 1) 
‘HHMMSS’ is the UTC hour, minute, and second of the day. 
 
Integers are made up of at least one digit: 

integer ::= DIGIT { DIGIT } 
 

Hex numbers are represented by <hexstring>: 
hexstring ::= hexdigit { hexdigit } 
hexdigit :: DIGIT |  
            ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | 
            ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | 

 

A “NAME” is an alphanumeric string that contains no whitespace. It must begin with a 
letter. 

NAME ::= letter { letter | digit | underscore } 

underscore ::= '_' 

 

A special identifier ‘empty’ is occasionally used to explicitly indicate a field that contains 
no data (i.e. zero length) 

1.4 Revision History of this Specification 

1.4.1 Changes from Revision 2.1 to 2.2 
June 23, 2003 

• SOURCE added as legal keyword in search criteria file. See section 4.1. 
• Multi mode maximum response size reduced from 50,000 to 10,000. Large response 

blocks have proven to be problematic in some network environments. The smaller 
size still provides very good through-put. See section 6.2. 

• New error codes added DDDSINTERNAL, DDDSFATAL, and 
DNOSUCHSOURCE. See Table 2-1. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 5  

2 DDS Protocol Messages 
This section describes the general features of the protocol that are observed by all 
message types. 

2.1 DDS Request/Response Headers 

Each request and response is composed of a 10-byte header followed by a variable length 
body. Protocol messages are constructed as follows: 

DdsMessage ::= header body 

header ::= sync type length 

sync ::= 'FAF0'    # last letter is a zero. 

type ::= octet     # unique type codes defined for each message 

length ::= DIGIT DIGIT DIGIT DIGIT DIGIT  # 5-digit number 

body ::= OCTET_STRING 

First 4 bytes MUST be the ASCII characters “FAF0” (the last character is a zero). 

The next byte contains the message type. Type-codes for each request are described 
below. 

The next 5 bytes is a five-digit number, zero-filled. This specifies the exact number of 
bytes contained in the body to follow. 

All client requests and server responses MUST be valid DdsMessages, as defined above. 
For each request, the server MUST send a single response. 

The body portion of requests and responses varies with each message type and are 
described in the following sections. 

2.2 Normal and Error Responses 

A server MUST respond to a request with either a normal response or an error response. 
Exactly one response MUST be returned for each request. 

The body portion of an error responses MUST be formatted as follows: 
ErrorBody ::= '?' ServerCode ',' SystemCode ',' [ explanation ] 

ServerCode ::= integer 

SystemCode ::= integer 

explanation ::= STRING    # optional free-form ASCII string 

The SystemCode is a Unix ‘errno’ value. This may be zero if the error was internal to the 
server. It will be non-zero if the problem was a system error, for example, attempting to 
retrieve a network list file that does not exist. 

ServerCodes were originally designed for use on DOMSAT systems. Currently defined 
codes are shown in Table 2-1. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 6  

Several of these codes were invented to support various iterations of DOMSAT receivers 
and may have no meaning to other server implementations. Servers SHOULD refrain 
from defining new codes unless absolutely necessary. 

Name Code Description 
DSUCCESS 0  
DNOFLAG 1 Could not find start of message flag.  
DDUMMY 2 Message found (and loaded) but it's a dummy.  
DLONGLIST 3 Network list was too long to upload.  
DARCERROR 4 Error reading archive file.  
DNOCONFIG 5 Cannot attach to configuration shared memory  
DNOSRCHSHM 6 Cannot attach to search shared memory  
DNODIRLOCK 7 Could not get ID of directory lock semephore  
DNODIRFILE 8 Could not open message directory file  
DNOMSGFILE 9 Could not open message storage file  
DDIRSEMERR 10 Error on directory lock semephore  
DMSGTIMEOUT 11 Timeout waiting for new messages  
DNONETLIST 12 Could not open network list file  
DNOSRCHCRIT 13 Could not open search criteria file  
DBADSINCE 14 Bad since time in search criteria file  
DBADUNTIL 15 Bad until time in search criteria file  
DBADNLIST 16 Bad network list in search criteria file  
DBADADDR 17 Bad DCP address in search criteria file  
DBADEMAIL 18 Bad electronic mail value in search criteria file 
DBADRTRAN 19 Bad retransmitted value in search criteria file  
DNLISTXCD 20 Number of network lists exceeded  
DADDRXCD 21 Number of DCP addresses exceeded  
DNOLRGSLAST 22 Could not open last read access file  
DWRONGMSG 23 Message doesn't correspond with directory entry  
DNOMOREPROC 24 Can't attach: No more proccesses allowed  
DBADDAPSSTAT 25 Bad DAPS status specified in search criteria.  
DBADTIMEOUT 26 Bad TIMEOUT value in search crit file.  
DCANTIOCTL 27 Cannot ioctl() the open serial port.  
DUNTILDRS 28 Specified 'until' time reached  
DBADCHANNEL 29 Bad GOES channel number specified in search crit  
DCANTOPENSER 30 Can't open specified serial port.  
DBADDCPNAME 31 Unrecognized DCP name in search criteria  
DNONAMELIST 32 Cannot attach to name list shared memory.  
DIDXFILEIO 33 Index file I/O error  
DNOSRCHSEM 34 Cannot attach to search semaphore  
DUNTIL 35 Specified 'until' time reached  
DJAVAIF 36 Error in Java - Native Interface  
DNOTATTACHED 37 Not attached to LRGS native interface  
DBADKEYWORD 38 Bad keyword  
DPARSEERROR 39 Error parsing input file  
DNONAMELISTSEM 40 Cannot attach to name list semaphore.  
DBADINPUTFILE 41 Cannot open or read specified input file  
DARCFILEIO 42 Archive file I/O error  
DNOARCFILE 43 Archive file not opened  
DICPIOCTL 44 Error on ICP188 ioctl call  
DICPIOERR 45 Error on ICP188 I/O call  
DINVALIDUSER 46 Invalid user name 
DDDSAUTHFAILED 47 DDS Authentication Failure 
DDDSINTERNAL 48 DDS Internal Error 
DDDSFATAL 49 DDS Fatal internal server error 
DNOSUCHSOURCE 50 Search criteria specified an invalid data source. 

Table 2-1: Currently Defined Error Codes 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 7  

Table 2-2 contains the valid type-codes for DDS messages 

 

Type-
Code 

Name Description 

a IdHello Client unauthenticated connect request. 

Server accept/reject response. 

b IdGoodbye Client sends terminal handshake message before disconnect. 

Echoed back to client by server. 

f IdDcp Client request for next DCP message. 

Server response containing error or DCP message. 

g IdCriteria Client reads or writes search criteria on the server. The same 
type-code used for bidirectional transfer. See section 4 for 
details. 

j IdPutNetlist Client uploads a network list to the server. 

Server accept/reject response. 

k IdGetNetlist Client requests download of a network list from the server. 

Server response contains error or the network list. 

e IdStop Used to abort data retrievals that may take a long time to 
time-out. This command is essentially a NOOP. 

Server echoes this message as a response to the abort. 

m IdAuthHello Authenticated connect message containing hash of 
password. 

Server accept/reject response. 

n IdDcpBlock Client request for next block of DCP messages. 

Server response containing multiple DCP messages in one 
DdsMessage 

Table 2-2: Type-Codes used in DDS Messages. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 8  

3 Connecting and Disconnecting 
This section describes how connections are established and broken. 

3.1 TCP Sockets 

DDS is a simple client/server protocol running over TCP sockets. The server establishes a 
listening socket. The client connects to the port number for this socket. A new 
bidirectional socket is then established for communication between client and server. 

By default, the server SHOULD listen on port 16003. Older implementations used 9999. 
Clients and servers SHOULD be coded so that the listening port is configurable. 

After establishing the socket, the first request from the client MUST be one of the two 
authentication mechanisms described below. Any requests sent prior to a valid 
Authentication Exchange MUST generate an error response from the server. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 9  

3.2 Authentication by Assertion 

This message type is supported by all protocol versions. However, Version 3 (and above) 
servers MAY disallow authentication-by-assertion if they only want to support 
authenticated clients. In this case the server MUST return an error to this request. 

 “Authentication by Assertion” means that the client simply asserts an identity by passing 
a username to the server. If the username matches a valid user on the server, the 
connection is accepted. 

Authentication by Assertion is safe under the following conditions: 

• The server maintains search criteria and network list files in a temporary session-
directory. 

• The server places limits on the size and number of network lists to be stored. 
• The client does not make assumptions about what network lists are currently available 

on the server (i.e. it should always upload the list at the start of each session). 

The type-code for IdHello is ‘a’. The body of the request and response MUST be as 
follows: 

HelloRequest ::= username 

username ::= NAME   # no more than 80 chars 

HelloResponse ::= AcceptResponse | ErrorBody 

AcceptResponse ::= username [ SP ProtocolVersion ] 

ProtocolVersion ::= integer 

The body of the request contains the user name. Older implementations padded this name 
to 80 characters by adding spaces to the right. Servers MUST support this. 

On success, the server MUST send an AcceptResponse, containing the username, and 
optionally, an integer representing the highest protocol version supported by this server. 
If the protocol version is not present in the response, the client SHOULD assume 
protocol version 1. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 10  

3.3 Authenticated Connection 

This message type is supported by protocol version 3 and higher. Clients MUST NOT 
send this message to servers with a lower protocol version. Servers SHOULD be 
configurable as to whether they support and/or require authenticated connections. 

An ‘authenticated hello message’ has a type-code of IdAuthHello =  ‘m’. The body is as 
follows: 

AuthHelloBody ::= username SP time SP AuthenticatorHash 

username ::= NAME 

# time is UTC date/time stamp in format YYDDDHHMMSS 

AuthenticatorHash ::= hexstring     # exactly 40 hex digits 

# Response is as follows: 

AuthHelloResp ::= AuthAcceptResp | ErrorBody 

AuthAcceptResp ::= username SP time SP ProtocolVersion 

ProtocolVersion ::= integer 

Username must represent a valid user on the server. The time should be the current time 
in the UTC (GMT) time-zone. The server SHOULD check for the reasonableness of the 
time in order to prevent replay attacks. Clients and servers MUST disallow zero-length 
usernames or passwords. 

The AuthenticatorHash is a 40-character hex representation of a 20-byte SHA hash code. 
Clients and servers MUST construct the hash-code as follows: 

1. Construct a preliminary 20-byte hash code with no time component. The hash 
should be constructed from: 

• username 
• password 
• username 
• password 

2. The preliminary hash represents a shared-secret that is stored on the server, and 
supplied by the user. Client software should query the user for the password in a 
secure manner. 

3. The authenticator is another 20-byte SHA hash. It is constructed from: 

• username 
• preliminary hash 
• time-bytes: 4-byte integer representing time since Unix epoch, in big-endian 

order. 
• username 
• preliminary hash 
• time-bytes 

4. Convert the 20-byte authenticator hash to a 40 byte Hexadecimal string. Use 
capital letters for A-F. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 11  

3.4 Disconnecting 

This capability is supported by all protocol versions. 

The proper way to terminate a connection is to send the IdGoodbye (type=’b’) message, 
wait for the response, and then close the socket. Clients SHOULD be coded this way. 

The IdGoodbye message has an empty (zero-length) body. Upon receiving such a 
message, the server MUST simply echo the request back to the client. 

If a client simply closes the socket, the server will most-likely detect this and close the 
socket properly. Sometimes, particularly over WAN connections, the server may not 
detect this right away. Servers SHOULD implement a timeout mechanism such that 
clients that have issued no requests in N seconds can be disconnected. The value of N 
SHOULD be configurable on the server. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 12  

4 Transferring Search Criteria to the Server 
Capabilities in this section apply to all version of DDS protocol. 

A client specifies which messages it wants to retrieve by sending a “Search Criteria” file 
to the server. Search Criteria file format is described in section 4.1. 

The client SHOULD transmit the desired search criteria to the server at least once prior to 
retrieving data. In other words, the client SHOULD NOT make any assumptions about 
what search criteria (if any) are in effect on the server. 

Once sent, a search criteria stays in effect for the duration of the session, or until another 
search criteria is sent. 

The type-code for IdCriteria is ‘g’. 
SearchCritReq ::= FiftyBlanks CriteriaText 

FiftyBlanks ::= 50*( SP )     # 50 ASCII space characters 

CriteriaText ::= OCTET_STRING 

# Response is either error or just the 50-blanks 

SearchCritResp ::= ErrorBody | FiftyBlanks 

The “FiftyBlanks” field used to contain a file-name that was used only by the client (the 
server simply echoed it). This is deprecated. Clients and servers should fill this field with 
exactly 50 space characters. 

The CriteriaText is a variable length text buffer containing the file contents.  

Lines in the file-data MUST be terminated by a single line-feed character.  

Search Criteria files MUST NOT be longer than 16000 bytes. 

On success, the server MUST respond with valid message of type IdCriteria (‘g’). The 
message body SHOULD contain the 50 space characters only. Note that older servers 
echoed the complete search criteria file. Clients SHOULD be coded to allow (and ignore) 
this. 

Upon receiving a search criteria file, the server must evaluate the criteria and establish a 
session context. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 13  

4.1 Search Criteria File Format 

A search criteria file is a text file containing a series of keyword-value pairs, one per line, 
separated by a colon: 

KEYWORD: Value 

Each line begins with a keyword, followed by a colon, followed by a string value. Here 
are the available keywords: 

DRS_SINCE Only retrieve messages that were received by this system 
after the specified time. See allowable time formats below. 

DRS_UNTIL Only retrieve messages that were received by this system 
before the specified time. See allowable time formats 
below. 

DAPS_SINCE Only retrieve messages with a DAPS time-stamp after the 
specified time. See allowable time formats below. 

DAPS_UNTIL Only retrieve messages with a DAPS time-stamp before the 
specified time. See allowable time formats below. 

NETWORK_LIST The value following this keyword is a network list file. 
Only retrieve messages whose DCP address is contained in 
the list. For multiple lists, put multiple lines in the search 
criteria file, each beginning with the NETWORK_LIST 
keyword. Network list file names MUST NOT contain path 
components. 

DCP_ADDRESS Only retrieve messages with the specified DCP address. To 
specify multiple addresses, put multiple lines in the search 
criteria file, each beginning with the DCP_ADDRESS 
keyword. 

DCP_NAME Only retrieve messages with the specified DCP name. 
Names are mapped to DCP addresses in network list files. 
See the section below on Network List Files for details. 

CHANNEL Only retrieve messages that were transmitted on the 
specified GOES channel. The value is a number only. The 
GOES spacecraft identifier (‘E’ or ‘W’) is not necessary. 

SOURCE One of DOMSAT, NETBACK, DRGS, NOAAPORT, 
LRIT, or some other string that has meaning to a particular 
server. This specifies that the server SHOULD only return 
messages that were received form a particular data source. 
By default, the server SHOULD return data from any 
available data source. To specify multiple sources, put 
multiple lines with this format in the file, each naming a 
single source. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 14  

4.1.1 Allowable Time Formats for a Search Criteria File 
The SINCE and UNTIL values can take one several time formats. 

Relative formats start with the keyword “now” and then add or subtract increments. For 
example: 

now – 20 minutes 
now – 1 day 
now – 1 week 3 days 20 minutes 10 seconds 
now 
 

You can specify an absolute GMT value in one of the following formats. 
YYYY/DDD HH:MM:SS complete specification 
YYYY/DDD HH:MM seconds assumed to be 00 
DDD HH:MM:SS assume current year 
DDD HH:MM seconds assumed to be 00 
HH:MM:SS assume current day 
HH:MM seconds assumed to be 00 
 

Output will stop when all messages currently on the server have been retrieved. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 15  

5 Transferring Network Lists to/from the Server 
This capability exists in DDS protocol version 2 and higher. Clients MUST NOT send 
this type of request to version 1 servers. 

DDS Version 2 added a new capability for transferring network list files to and from a 
server. Version 1 relied on network lists being persistently stored and maintained on the 
server. 

Servers MAY implement a separate mechanism for storing network lists persistently. 
This relieves clients from the burden of sending them at the start of each session. 
Persistent lists can be stored and maintained securely, and are available for reference by 
any client. 

Clients MAY upload transient network lists to the server at any time in a session. 
Network lists transferred via DDS SHOULD be considered transient lists. Clients 
SHOULD NOT make any assumption regarding what transient network lists reside on the 
server. In particular, a client SHOULD NOT assume that a list uploaded in a previous 
session is still available on the server. 

The only size limitation imposed on a transient network list by the protocol is that it must 
fit in a single protocol-message. The header uses 5 digits to represent the message body 
length. This means that transient network lists are limited to (99999 – 64) bytes. 

5.1 Sending a Transient Network List to the Server 

The type-code for IdPutNetlist is ‘j’. This command uploads a list from the client to the 
server. 

PutNetlistReq ::= filename ListText 

filename ::= NAME { SP }    # Name left-justified in 64-char field 

ListText ::= OCTET_STRING 

# Response is either empty or an ErrorBody 

PutNetlistResp ::= empty | ErrorBody 

The file name field must be exactly 64 characters long. The name is left justified in the 
field and padded with blanks. The name field SHOULD NOT contain path separators ‘/’ 
or ‘\’. That is, it should be a simple filename.  

On success, the server MUST respond with a DDS message with type IdPutNetlist (‘j’) 
with an empty message body. 

Upon error, the server MUST respond with a message containing an ErrorBody with 
sufficient information for the client to diagnose the problem. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 16  

5.2 Retrieving Network Lists From the Server 

Version 2 servers MUST implement this mechanism allowing clients to retrieve network 
lists. This applies to both transient lists and persistent lists. 

The type-code for IdGetNetlist is ‘k’. This command downloads a list from the server to 
the client. 

GetNetlistReq ::= filename 

filename ::= NAME { SP }  # Name left-justified in a 64-char field 

GetNetlistResp ::= ErrorBody | ( filename ListText ) 

Following the header is a 64-character field containing the network list file name, left 
justified. The name field SHOULD NOT contain path separators ‘/’ or ‘\’. That is, it 
should be a simple filename.  

On success, the server MUST respond with a DDS message of type IdGetNetlist (‘k’) 
containing: 

• a 64 character field containing the network list file name, left justified. 
• a variable-length field containing the network list file contents. 

If the specified list is not available on the server a response of type IdGetNetlist with an 
ErrorBody MUST be returned. 

5.3 Network List File Format 

Network List Files are ASCII Files containing a DCP addresses, one per line. Each line 
MUST be terminated by a single line-feed character. The format of each line is as 
follows: 

NetlistFile ::= { NetlistLine } 

NetlistLine ::= DcpAddress [ ':' NAME [ SP Description ] ] EOL 

Description ::= STRING 

EOL ::= LF | CRLF 

Example 
CE3E13BC:WTSM5 Chippewa River Diversion Dam near Watson, MN 
CE3E86DE:GLKM5 GULL LAKE ELEVATION   near Brainerd, MN 
CE456DFA:BIFM5 BIG FORK RIVER AT BIG FALLS, MN 
CE45705E:GPOM5 LAKE KABETOGAMA AT GOLD PORTAGE, MN 
CE457E8C:SSIM5 LAKE OF THE WOODS AT SPRING STEEL ISLAND, nr Warroad, MN 

 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 17  

6 Retrieving Data 
After connecting, authenticating, sending network lists, and sending search criteria, a 
client typically enters a loop where it continually polls for the next message that passes 
the criteria. 

In both mechanisms described below for retrieving data, the server MUST only send 
DCP messages that match the client’s search criteria. 

All DCP Messages MUST start with the standard 37-byte DOMSAT header as defined in 
Table 6-1. 

Offset Length Type Description 

0 8 hexstring 8 hex digit DCP address 

8 11 time Time formatted as YYDDDHHMMSS in UTC. 

19 1 char Message type codes ‘G’ means a good message, ‘?’ 
means a message of questionable quality. Other type 
codes indicate DAPS-generated status messages. 

20 2 integer 2 digit signal strength. Signal Strength will be two 
ASCII digits and will be in the range of 32 to 57.  
Signal strength is the implied EIRP, assuming the 
pilot is a +47 dBm reference. 

22 2 sign digit A + or - sign followed by a single digit or the letter 
‘A’. Represents frequency offset in units of 50 Hz. A 
represents the maximum offset of 500 Hz. 

24 1 char Modulation Index, coded as follows: 

 N Normal: (60° ± 5°) 

L Low: (≤ 50°) 

H High: (≥ 70°) 

25 1 char Data Quality Indicator, coded as follows: 

N Normal: Error rate better than 10-6 

F Fair: Error rate between 10-4 and 10-6 

P Poor: Error rate worse than 10-4 

26 3 integer 3-digit GOES channel number, zero-filled. 

29 1 char GOES Spacecraft indicator (E or W) 

30 2 hexstring 2 hex digits representing uplink carrier status. 

32 5 integer 5-digit message length. This is the exact number of characters to 
follow. 

Table 6-1: DOMSAT Header Contents. 

 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 18  

6.1 Retrieving a Single Message per Request 

This message type exists in all protocol versions. 

To request a single DCP message, the client sends a DDS message of type IdDcp (‘f’) 
with an empty message body, and then waits for a response. 

The server constructs a response message, again with type IdDcp (‘f’) followed by: 

• A 40-character field containing a unique file-name that could be used to store this 
message on the client. This field is legacy from the original implementation. 

• A variable length field containing the 37-byte DOMSAT Header followed by the 
DCP message. 

6.1.1 Semantics for Until Time and Real-Time Retrieval 
If the “until” time specified in the search criteria is reached, the server MUST respond 
with an error message with ServerCode DUNTIL (35). 

If the search criteria contains no until time, this indicates that the client wishes to ‘hang 
on the line’, retrieving data in real-time as it becomes available. When the server receives 
an IdDcp request, AND no until time has been set, AND there are no new messages that 
meet the client’s criteria, THEN the server MUST respond with an error message with 
ServerCode = DMSGTIMEOUT (11). When the client receives this response, it 
SHOULD pause briefly and then try the request again. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 19  

6.2 Retrieving Multiple Messages per Request 

This request type was added for protocol version 4. Clients MUST NOT send this request 
to servers that do not support protocol version 4. 

To request multiple DCP messages per request, the client sends a DDS message of type 
IdDcpBlock (‘n’). The request has an empty (zero-length) body. 

The server MUST send a response of type IdDcpBlock. The body of the response will be 
either an ErrorBody or it will contain multiple DCP messages, back-to-back: 

# Request body is empty 

MultDcpReqBody ::= empty 

# Response contains DCP messages back-to-back: 

MultDcpRespBody ::= ErrorBody | MultMessages 

MultMessages ::= DcpMessage { DcpMessage }     # at least 1 message 

DcpMessage ::= DOMSATHeader DcpMsgBody 

# DOMSATHeader ::= 37-bytes as defined in table 

DcpMsgBody ::= OCTET_STRING     # Actual message bytes 

The server will place messages into the response up to a maximum of 10,000 bytes. The 
server MUST only place complete DCP messages into the response. If the next message 
does not fit, the server MUST return the response and await the next request. 

The “until time” and “real time retrieval” semantics described above for single message 
transfers also applies to multiple message requests. 

The server SHOULD NOT delay more than 55 seconds before returning a response to the 
client. Hence the server MAY return shorter than the maximum-size response if its search 
engine is taking a long time to find messages matching the search criteria. 

The client MUST NOT interpret a less-than-maximum-size response as a sign that the 
server is finished. 



 

Ilex Engineerinc, Inc. DDS Protocol Specification 20  

7 Reference Implementation 
A reference implementation of DDS is included in the LRGS (Local Readout Ground 
Station) code, developed by Ilex Engineering, Inc.  The client software is 100% Java. The 
server software contains some native code and is written to run on a LRGS/DOMSAT 
receiver. 

The LRGS software was written under contract to the USGS and USACE and is open-
source. 

To obtain a copy contact the U.S. Geological Survey, Water Resources Division or send 
an email to info@ilexeng.com. 


